SIGRAFLEX® HOCHDRUCKPRO

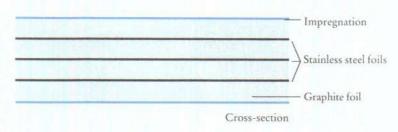
TA Luft-Compliant Sealing Sheet Made from Natural Graphite with High-Integrity Stainless Steel Foil Reinforcement for Extreme Conditions

Expanded Graphite

Broad Base. Best Solutions.

SIGRAFLEX® HOCHDRUCKPRO

Our Contribution to Environmental Protection


SIGRAFLEX® HOCHDRUCKPRO

is a multilayer high-strength graphite sealing sheet comprising 0.5 mm thick layers of high-purity graphite foil and 0.05 mm thick stainless steel foils. Depending on the sheet thickness required, several layers of graphite and stainless steel foil are joined together in a patented adhesive-free process. As a result, the sheets have outstanding mechanical properties. The sealing sheet is impregnated to reduce leakage and improve handling.

SIGRAFLEX HOCHDRUCK PRO allows end users in the process industry to cover almost their entire gasket application range with a reliable and safe product.

Applications

- ► For difficult and mechanically highly stressed sealed joints (in tongue-and-groove and special-dimension flanges, process equipment, heat exchangers); also suitable for all common pipework and vessel flange designs
- Recommended for one-piece gaskets up to 1500 mm outside diameter; for diameters over 1500 mm as two-layer structures with segmented sections and staggered joints, for instance
- ▶ For high internal pressures of up to 250 bar
- ► For corrosive media
- Suitable for a broad range of temperatures from -250°C to approx. 550°C; for applications at more than 450°C, users should request our advice
- Gaskets for the chemical, petrochemical and refinery industries
- Steam pipework and boilers in power stations
- ▶ Heat transfer oil and heating facilities
- ► Inspection glasses, pumps, fittings
- Existing plants

Properties

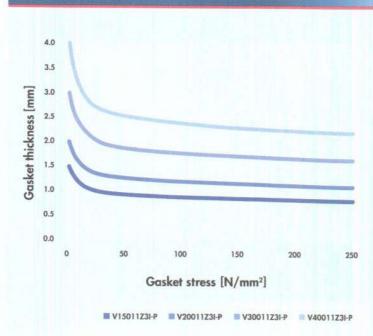
- Reduction in fugitive emissions due to very high leak-tightness
- Complies with the strict TA Luft leakage requirements for all sheet thicknesses
- Very high maximum permissible gasket stress
- High operational reliability and excellent oxidation resistance
- High blow-out resistance and very high mechanical strength
- Very high fault tolerance during assembly and operation
- ► Good chemical resistance
- Long-term stability of compressibility and recovery, even under fluctuating temperatures
- Good scratch resistance; antistick finish due to special impregnation
- No measurable cold or warm flow characteristics up to the maximum permissible gasket stress
- No aging or embrittlement, owing to the absence of adhesives or binders
- ► Ease of processing
- Asbestos-free, no associated health risks

Approvals

- ► TA Luft (VDI 2440/VDI 2200) for all thicknesses
- ► Fire safety according to API 607
- Blow-out resistance (TÜV at 2.5 times the nominal pressure)
- ► BAM oxygen
- ► DVGW (DIN 3535-6)

Assembly instructions

For assembly, use dry and undamaged gaskets only. Wet graphite gaskets must not be fitted unless first dried completely. The sealing faces must be clean, dry and free from grease. Do not use release agents! Position the gasket centrically and avoid mechanical stresses during assembly. An assembly aid can be used if necessary. To facilitate assembly in difficult positions, the gasket may be fixed by using a commercially available adhesive. However, the adhesive should be applied sparingly at a few points only.


Align the flanges as plane-parallel as possible. First hand-tighten the bolts and then tighten the bolts in a crosswise order to about 50% of the maximum torque value, in the second stage to about 80% and to the full value in the third stage. All bolts must be tightened to the specified bolt load, so the torque must be checked repeatedly. Our detailed assembly instructions are available on request.

Our patented, overlap-free laser welding process allows sheets of up to 1500 mm width without leakage channels

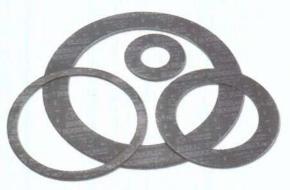
Compressibility of SIGRAFLEX HOCHDRUCKPRO

Forms supplied

SIGRAFLEX HOCHDRUCK PRO sheets are available in the following dimensions and type designations:

Dimensions in mm	Types
1500 x 1500 x 1.5	V15011Z3I-P
1500 x 1500 x 2.0	V20011Z3I-P
1500 x 1500 x 3.0	V30011Z3I-P
1500 x 1500 x 4.0	V40011Z3I-P
The sheets can also be supp	olied in dimensions of
1000 x 1000 mm.	

Material data of SIGRAFLE	X" HOCHDRUCK	(PRO				
Material type			V15011Z3I-P	V20011Z3I-P	V30011Z3I-P	V40011Z3I-P
Thickness	hickness			2.0	3.0	4.0
Dimensions	m		1.5 x 1.5 /	1.0 x 1.0		
Bulk density of graphite	g/cm ³		1.	1		
Ash content of graphite (DIN 519)	%	≤0.15				
Total chloride content	ppm		≤1	0		
Reinforcing steel foil details				Flat stainles	ss steel foil	
	aterial number			316	(L)	
	Thickness	mm		0.0	05	
N	umber of foils		2	3	5	7
Residual stress (DIN 52913) $\sigma_{D\ 16\ h,}$	300 °C, 50 N/mm ²	N/mm ²		≥ ∠	48	
Gasket factors (DIN E 2505/DIN	28090-1)					
Gasket width b _D =20 mm					2 2	
$\sigma_{VU/0.1}$ at an internal pressure of	10 bar	N/mm ²	10	10	10	11
	16 bar	N/mm ²	10	12	13	14
	25 bar	N/mm ²	12	14	15	17 20
	40 bar	N/mm ²	1.3	16	18	1.3
m σ _{vo}		N/mm ²	290	270	240	200
σ _{BO of 300°C}		N/mm ²	230	210	180	160
Compression factors (DIN 28090-	2)					
Compressibility	€ _{KSW}	%		30 -	40	
Recovery at 20°C	€KRW	%		4 -		
Hot creep	€wsw	%		<		
Recovery at 300°C	EWRW	%		3 -		
Young's modulus at 20 N/mm² (D	N/mm ²		75			
ASTM	"m" factor	1 47 11111			.5	
ASIM	"y" factor	nsi			00	
Compressibility	y ideloi	psi %			- 40	
Recovery	ASTM F36	%		20		
The gasket factor conversion formu	ılas	70			$\sigma_{vu} \cdot b_{D}$	
as per AD Merkblatt B7 are as foll					n · b _D	
- 0.00						
Definitions σ _{VU/0.1} Minimum gasket assembly stress nee	k _o		for gasket assemb			
leakage class L 0.1 (according to DII Recommended gasket assembly stres	k, Ko	In mm, factor for gasket stress in service In N/mm², max. gasket stress-bearing capacity				
σ _{BU} Minimum gasket assembly stress in se					stress of 35 N/r	mm²
in service $(\sigma_{BU} = p \cdot m)$		€ _{KSW}	Gasket recove	ery after reduction		
σ_{VO} Maximum permissible gasket stress of $\sigma_{BO, 300^{\circ}C}$ Maximum permissible gasket stress in σ_{BU} / ρ_i		ϵ_{wsw}	50 N/mm ² at	compression unde 300°C after 16 h		of
"m" factor Similar to m, but defined according t "y" factor Minimum gasket stress in psi	o ASTM, hence different v	value E _{WRW}	Recovery afte 50 N/mm² to	r reduction in gask 1 N/mm²	cet stress from	


The percentage changes in thickness of ϵ_{KSW} , ϵ_{KRW} , ϵ_{WSW} and ϵ_{WEW} are relative to the initial thickness.

			Q _{min/L}		Qsmi				$\mathbf{Q}_{\min/t}$		Q _s		
				Q _A = 20	$Q_A = 40$	Q _A = 60	Q _A =80			Q _A = 20	Q _A =40	Q _A =60	Q _A = 80
10-1	10	2	< 10	< 10	< 10	< 10	< 10	3	< 10	< 10	< 10	< 10	< 10
10-1	16	2	< 10	< 10	< 10	< 10	< 10	3	< 10	< 10	< 10	< 10	< 10
10-1	25	2	< 10	< 10	< 10	< 10	< 10	3	< 10	< 10	< 10	< 10	< 10
10-1	40	2	< 10	< 10	< 10	< 10	< 10	3	< 10	< 10	< 10	< 10	< 10
10-2	10	2	< 10	< 10	< 10	< 10	< 10	3	< 10	< 10	< 10	< 10	< 10
10-2	16	2	11	< 10	< 10	< 10	< 10	3	12	< 10	< 10	< 10	< 10
10-2	25	2	13	< 10	< 10	< 10	< 10	3	14	< 10	< 10	< 10	< 10
10-2	40	2	16	< 10	< 10	< 10	< 10	3	17	< 10	< 10	< 10	< 10

Relaxation	ratio	PQR				
Per	RT		150	150°C		
Q _s e _{G0}						
30	0.97	0.98	0.95	0.93	0.91	0.91
50	0.98	0.98	0.96	0.97	0.96	0.94
200/200/200	1.00		0.99		0.99	
200/200/180		1.00		0.99		0.98

Max. permissible gasket stress Q _{sma}						
Q _{Smax}	RT	150°C	300°C			
2	> 200	> 200	> 200			
3	> 200	200	180			

Eg	E _G F		150		30	
Q _s e _{G0}						
20	364	382	419	398	406	371
30	518	562	585	606	560	584
40	832	889	776	868	805	766
50	957	1148	1099	1121	1055	1109
60	1432	1287	1247	1246	1275	1325
80	1600	1760	1649	1983	1524	1621
100	2029	2649	1700	2231	2043	1939
120	2629	3123	2855	2828	2277	2878
140	3200	3057	3026	2872	2484	3354
160	3117	3464	2934	3327	2967	3185
180	3318	3764	3096	3958	2787	3208
200	3344	4428	3087	4768		

Definition E _G	[MPa]	Secant unloading modulus of the gasket
e _{G0}	[mm]	Gasket thickness
L	[mg/(s-m)]	Leakage class
PN	[bar]	Nominal pressure
Q _A	[MPa]	Gasket assembly stress
POR		Relaxation ratio for stiffness C = 500 kN/mm
Q _{min/L}	[MPa]	Minimum gasket assembly stress
Q _s	[MPa]	Gasket stress
Q _{Smin/E}	[MPa]	Minimum gasket stress in service
Q _{Strax}	[MPa]	Maximum permissible gasket stress
		before damage occurs
RT		Room temperature
Further	values on requ	est.

Product overview							
Product		Characteristics	Recommended applications				
SIGRAFLEX® FOIL FC/Z/APX	A	Flexible, continuous	-250°C to approx. 550°C; for compressed packings, spiral-wound and kammprofile gaskets				
SIGRAFLEX® STANDARD	-	Unreinforced, impregnated	Raised-face flanges; enamel or glass flanges; highly corrosive media				
SIGRAFLEX® ECONOMY /C4		Reinforced with bonded s/s** foil	Pumps; fittings; gas supply; waste gas pipelines				
SIGRAFLEX® UNIVERSAL VC2I		Reinforced with tanged s/s** foil, impregnated	Pipework and vessels in the petro-/chemical industries and in power stations				
SIGRAFLEX® UNIVERSAL PRO /C2I-P	=	Reinforced with tanged s/s [™] foil, impregnated	For TA Luft* applications; for pipework and vessels in the petro-/chemical industries and in power stations				
SIGRAFLEX® SELECT /16010C3I	•	High-integrity s/s** foil reinforcement, impregnated	For TA Luft* applications; raised-face flanges; pipework in the chemical and petrochemical industries				
SIGRAFLEX® HOCHDRUCK /Z3I	•	High-integrity multilayer laminate, impregnated	Universal sealing sheet, also for solving sealing problems in pipework, process equipment, tonguand-groove flanges and non-standard joints in the petro-/chemical industries and in power stations				
SIGRAFLEX® HOCHDRUCK PRO /Z3I-P	•	High-integrity multilayer laminate, impregnated	Universal sealing sheet for TA Luft* applications, also for solving sealing problems in pipework, process equipment, tongue-and-groove flanges and non-standard joints in the petro-/chemical industries and in power stations				
SIGRAFLEX® MF /Z2MF	•	High-integrity laminate made of graphite, s/s** and PTFE	Maximum requirements for sealability (TA Luft*), safety, chemical resistance and process hygiene; sealed joints in the chemical and petrochemical, pharmaceutical and food industries				
SIGRAFLEX® EMAIL VZ3E	88	High-integrity s/s** foil reinforcement	PTFE-envelope gaskets in enameled pipework, vessels, stub connections, etc.				

Forms supplied: ▲ roll or tape ■ sheet material ● gasket with inner eyelet, for applications requiring TA Luft approval *TA Luft: German Clean Air Act ** s/s: stainless steel

® registered trademark of SGL Group companies

07 2008/1 2NA Printed in Germany

This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should therefore not be construed as guaranteeing specific properties of the products described or their suitability for a particular application. Any existing industrial property rights must be observed. The quality of our products is guaranteed under our "General Conditions of Sale".

Expanded Graphite SGL TECHNOLOGIES GmbH

Werner-von-Siemens-Str. 18 86405 Meitingen/Germany Phone +49 8271 83-2276 Fax +49 8271 83-2419 expandedgraphite@sglcarbon.de www.sigraflex.de

www.sglcarbon.com

מספר 1 בפתרונות לתעשיה

• יורוסיל בע"מ • טל. 04-8401360 • פקס. 04-8401455 • פקס. 04-8401465 • פתובת המפעל: רחוב קצנשטיין 34762 • פתובת למכתבים: רח' דוד אסף 2/48 חיפה 04766 • e-mail: euroseal@isdn.net.il • www.euroseal.co.il

